<< back
Observational evidence for a broken Li Spite plateau and mass-dependent Li depletion

J. Meléndez, L. Casagrande, I. Ramírez, M. Asplund, W. J. Schuster

We present NLTE Li abundances for 88 stars in the metallicity range -3.5 < [Fe/H] < -1.0. The effective temperatures are based on the infrared flux method with improved E(B - V) values obtained mostly from interstellar Na I D lines. The Li abundances were derived through MARCS models and high-quality UVES+VLT, HIRES+Keck and FIES+NOT spectra, and complemented with reliable equivalent widths from the literature. The less-depleted stars with [Fe/H]< -2.5 and [Fe/H] > -2.5 fall into two well-defined plateaus of ALi = 2.18 (σ = 0.04) and ALi = 2.27 (σ = 0.05), respectively. We show that the two plateaus are flat, unlike previous claims for a steep monotonic decrease in Li abundances with decreasing metallicities. At all metallicities we uncover a fine-structure in the Li abundances of Spite plateau stars, which we trace to Li depletion that depends on both metallicity and mass. Models including atomic diffusion and turbulent mixing seem to reproduce the observed Li depletion assuming a primordial Li abundance ALi = 2.64, which agrees well with current predictions (ALi = 2.72) from standard Big Bang nucleosynthesis. Adopting the Kurucz overshooting model atmospheres increases the Li abundance by +0.08 dex to ALi = 2.72, which perfectly agrees with BBN+WMAP.

nuclear reactions, nucleosynthesis, abundances - cosmology: observations - stars: abundances - stars: Population II

Based in part on observations obtained at the W. M. Keck Observatory, the Nordic Optical Telescope on La Palma, and on data from the HIRES/Keck archive and the European Southern Observatory ESO/ST-ECF Science Archive Facility.
Table 1 is only available in electronic form at

Astronomy & Astrophysics
Volume 515, Number of pages L3_1
2010 June

>> ADS>> DOI

Faculdade de Ciências da Universidade de Lisboa Universidade do Porto Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia