RESEARCH
<< back
Darwin - A Mission to Detect and Search for Life on Extrasolar Planets

C. S Cockell, A. Léger, M. Fridlund, T. M. Herbst, L. Kaltenegger, O. Absil, C. Beichman, W. Benz, M. Blanc, A. Brack, A. Chelli, L. Colangeli, H. Cottin, F. Coudé du Foresto, W. C. Danchi, D. Defrère, J.-W. den Herder, C. Eiroa, J. Greaves, T. Henning, K. J. Johnston, H. Jones, L. Labadie, H. Lammer, R. Launhardt, P. Lawson, O. P. Lay, J.-M. LeDuigou, R. Liseau, F. Malbet, S. R. Martin, D. Mawet, D. Mourard, C. Moutou, L. M. Mugnier, M. Ollivier, F. Paresce, A. Quirrenbach, Y. D. Rabbia, J. A. Raven, H. J. A. Röttgering, D. Rouan, N. C. Santos, F. Selsis, E. Serabyn, H. Shibai, M. Tamura, E. Thiébaut, F. Westall, G. J. White

Abstract
The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extra-solar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 µm), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO2, H2O, CH4, and O3. Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.

Keywords
Darwin—Extrasolar planets—Orbital tele- scopes—M stars—Earth-like planets—Interferometry. Astrobiology

Astrobiology
Volume 9, Number 1, Page 1
2009 February

>> ADS>> DOI

Faculdade de Ciências da Universidade de Lisboa Universidade do Porto Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia