RESEARCH
<< back
Jupiter’s Atmosphere Dynamics Based on High-Resolution Spectroscopy with VLT/ESPRESSO

P. Machado, J. E. O. Silva, F. Brasil, J. Ribeiro, R. S. Gonçalves, M. Silva

Abstract
We present a new study of Jupiter’s atmosphere dynamics using for the first time the extremely high-resolution capabilities of VLT/ESPRESSO to retrieve wind velocities in Jupiter’s troposphere, with a dedicated ground-based Doppler velocimetry method. This work is primarily a proof-of-concept for retrieving Jupiter’s winds using VLT/ESPRESSO Doppler velocities. These results are complemented by a re-analysis of Cassini’s data from its fly-by of Jupiter in December 2000, performing cloud tracking at visible wavelengths, for cross comparison with Doppler velocimetry results, along with previous cloud-tracking results. We explore the effectiveness of this refined method to measure winds in Jupiter, using high-resolution spectroscopy data obtained from ESPRESSO observations performed in July 2019, with a Doppler velocimetry method based on backscattered solar radiation in the visible range. Coupled with our ground-based results, we retrieved a latitudinal and longitudinal profile of Jupiter’s winds along select bands of the atmosphere. Comparing the results between cloud-tracking methods, based on previous reference observations, and our new Doppler velocimetry approach, we found a good agreement between them, demonstrating the effectiveness of this technique. The winds obtained in this exploratory study have a two-fold relevance: they contribute to the temporal and spatial variability study of Jupiter’s troposphere dynamics, and the results presented here also validate the use of this Doppler technique to study the dynamics of Jupiter’s atmosphere and pave the way for further exploration of a broader region of Jupiter’s disk for a more comprehensive retrieval of winds and to evaluate their spatial and temporal variability.

Keywords
Jupiter; atmosphere; spectroscopy; atmosphere dynamics; Doppler velocimetry

Universe
Volume 9, Number 491
2023 December

>> ADS>> DOI

Faculdade de Ciências da Universidade de Lisboa Universidade do Porto Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia