<< back
On using dipolar modes to constrain the helium glitch in red giant stars

G. Drťau, M. S. Cunha, M. Vrard, P. P. Avelino

The space-borne missions CoRoT and Kepler have revealed numerous mixed modes in red giant stars. These modes carry a wealth of information about red giant cores, but are of limited use when constraining rapid structural variations in their envelopes. This limitation can be circumvented if we have access to the frequencies of the pure acoustic dipolar modes in red giants, i.e. the dipole modes that would exist in the absence of coupling between gravity and acoustic waves. We present a pilot study aimed at evaluating the implications of using these pure acoustic mode frequencies in seismic studies of the helium structural variation in red giants. The study is based on artificial seismic data for a red giant branch stellar model, bracketing seven acoustic dipole radial orders around νmax. The pure acoustic dipole-mode frequencies are derived from a fit to the mixed-mode period spacings and then used to compute the pure acoustic dipole-mode second differences. The pure acoustic dipole-mode second differences inferred through this procedure follow the same oscillatory function as the radial-mode second differences. The additional constraints brought by the dipolar modes allow us to adopt a more complete description of the glitch signature when performing the fit to the second differences. The amplitude of the glitch retrieved from this fit is 15 per cent smaller than that from the fit based on the radial modes alone. Also, we find that thanks to the additional constraints, a bias in the inferred glitch location, found when adopting the simpler description of the glitch, is avoided.

stars: evolution; stars: interiors; stars: oscillations; Astrophysics - Solar and Stellar Astrophysics

Monthly Notices of the Royal Astronomical Society
Volume 497, Issue 1, Page 1008
2020 September

>> ADS>> DOI

Instituto de Astrof√≠sica e Ci√™ncias do Espa√ßo Universidade do Porto Faculdade de Ciências da Universidade de Lisboa
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia