<< back
Thin accretion disk signatures in dynamical Chern-Simons modified gravity

T. Harko, Z. Kovács, F. S. N. Lobo

A promising extension of general relativity is Chern-Simons(CS)-modified gravity, in which the Einstein-Hilbert action is modified by adding a parity-violating CS term, which couples to gravity via a scalar field. In this work, we consider the interesting, yet relatively unexplored, dynamical formulation of CS-modified gravity, where the CS coupling field is treated as a dynamical field, endowed with its own stress-energy tensor and evolution equation. We consider the possibility of observationally testing dynamical CS-modified gravity by using the accretion disk properties around slowly rotating black holes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard general relativistic Kerr solution. It is shown that the Kerr black hole provides a more efficient engine for the transformation of the energy of the accreting mass into radiation than their slowly rotating counterparts in CS-modified gravity. Specific signatures appear in the electromagnetic spectrum, thus leading to the possibility of directly testing CS-modified gravity by using astrophysical observations of the emission spectra from accretion disks.

Classical and Quantum Gravity
Volume 27, Number 101, Page 105010_1
2010 May

>> ADS>> DOI

Faculdade de Ciências da Universidade de Lisboa Universidade do Porto Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia