Collaborator
Email
Andrew.Humphrey@astro.up.pt
Biographic Notes
Andrew Humphrey obtained his bachelor and PhD degrees from the University of Hertfordshire, and has worked at various institutes in Europe, the Americas and Asia, before moving to Porto with a Marie Curie Fellowship. Andrew's research interests include the formation/evolution of galaxies as probed by various phenomena, particularly Lyman-alpha nebulae, powerful active galaxies, and dusty star-forming galaxies at high-redshifts.
Publications
ADS public library
Lastest publications at IA (or with IA Researchers)F. Zhong, N. R. Napolitano, C. Heneka, R. Zambelli, F. E. Bauer, N. Bouche, J. Comparat, Y. Kim, J. Krogager, M. Longhetti et al. (including: A. Humphrey), 2024,
Galaxy Spectra neural Network (GaSNet). II. Using deep learning for spectral classification and redshift predictions,
Monthly Notices of the Royal Astronomical Society, 532, 22
>> AbstractP. A. C. Cunha, A. Humphrey, J. Brinchmann, S. G. Morais, R. Carvajal, J. M. Gomes, I. Matute, A. Paulino-Afonso, 2024,
Identifying type II quasars at intermediate redshift with few-shot learning photometric classification,
Astronomy & Astrophysics, 687, 20
>> AbstractW. Wang, D. Wylezalek, J. Vernet, C. de Breuck, B. Gullberg, A. M. Swinbank, M. Villar Martín, M. D. Lehnert, G. Drouart, F. Arrigoni-Battaia et al. (including: A. Humphrey, P. Lagos), 2023,
3D tomography of the giant Lyα nebulae of z≈3–5 radio-loud AGN,
Astronomy & Astrophysics, 680, 44
>> AbstractR. Carvajal, I. Matute, J. Afonso, R. P. Norris, K. J. Luken, P. Sánchez-Sáez, P. A. C. Cunha, A. Humphrey, H. Messias, S. Amarantidis et al. (including: H. Miranda, A. Paulino-Afonso, C. Pappalardo), 2023,
Selection of powerful radio galaxies with machine learning,
Astronomy & Astrophysics, 679, 24
>> Abstract Euclid Collaboration, L. Bisigello, C. J. Conselice, M. Baes, M. Bolzonella, M. Brescia, S. Cavuoti, O. Cucciati, A. Humphrey, L. K. Hunt et al. (including: J. Brinchmann, A. C. da Silva, I. Tereno, C. S. Carvalho), 2023,
Euclid preparation – XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images,
Monthly Notices of the Royal Astronomical Society, 520, 19
>> AbstractL. Binette, Y. Krongold, S. A. R. Haro-Corzo, A. Humphrey, S. G. Morais, 2023,
Optimized Spectral Energy Distribution for Seyfert Galaxies,
Revista Mexicana de Astronomía y Astrofísica, 53, 9
>> Abstract