F. S. N. Lobo, J. Martinez-Asencio, G. J. Olmo, D. Rubiera-Garcia
Abstract
The dynamical generation of wormholes within an extension of General Relativity (GR) containing (Planck’s scale-suppressed) Ricci-squared terms is considered. The theory is formulated assuming the metric and connection to be independent (Palatini formalism) and is probed using a charged null fluid as a matter source. This has the following effect: starting from Minkowski space, when the flux is active the metric becomes a charged Vaidya-type one, and once the flux is switched off the metric settles down into a static configuration such that far from the Planck scale the geometry is virtually indistinguishable from that of the standard Reissner-Nordström solution of GR. However, the innermost region undergoes significant changes, as the GR singularity is generically replaced by a wormhole structure. Such a structure becomes completely regular for a certain charge-to-mass ratio. Moreover, the nontrivial topology of the wormhole allows us to define a charge in terms of lines of force trapped in the topology such that the density of lines flowing across the wormhole throat becomes a universal constant. In light of our results, we comment on the physical significance of curvature divergences in this theory and the topology change issue, which support the view that space-time could have a foamlike microstructure pervaded by wormholes generated by quantum gravitational effects.
Physical Review D
Volume 90, Page 024033_1
2014 July