RESEARCH
<< back
Seismic constraints on rotation of Sun-like star and mass of exoplanet

L. Gizon, J. Ballot, E. Michel, T. Stahn, G. Vauclair, H. Bruntt, P.-O. Quirion, O. Benomar, S. Vauclair, T. Appourchaux, M. Auvergne, A. Baglin, C. Barban, F. Baudin, M. Bazot, T. L. Campante, C. Catala, W. J. Chaplin, O. L. Creevey, S. Deheuvels, N. Dolez, Y. Elsworth, R. A. Garcia, P. Gaulme, S. Mathis, S. Mathur, B. Mosser, C. Régulo, I. W. Roxburgh, D. Salabert, R. Samadi, K. H. Sato, G. A. Verner, S. Hanasoge, K. R. Sreenivasan

Abstract
Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of 1.85+0.52-0.42MJupiter, which implies that it is a planet, not a brown dwarf.

Keywords
extrasolar planets - stellar oscillations - stellar rotation

Proceedings of the National Academy of Sciences
Volume 110, Number 33, Page 13267
2013 August

>> ADS>> DOI

Faculdade de Ciências da Universidade de Lisboa Universidade do Porto Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia