RESEARCH
<< back
Benchmarking the fundamental parameters of Ap stars with optical long-baseline interferometric measurements

K. Perraut, M. S. Cunha, A. Romanovskaya, D. Shulyak, T. Ryabchikova, V. Hocdé, N. Nardetto, D. Mourard, A. Meilland, F. Morand, I. Tallon-Bosc, C. Farrington, C. Lanthermann

Abstract
Context. The variety of physical processes at play in chemically peculiar stars makes it difficult to determine their fundamental parameters. In particular, for the magnetic ones, called Ap stars, the strong magnetic fields and the induced spotted stellar surfaces may lead to biased effective temperatures when these values are derived through spectro-photometry.
Aims. We propose to benefit from the exquisite angular resolution provided by long-baseline interferometry in the visible to determine the accurate angular diameters of a number of Ap stars, and thus estimate their radii by a method that is as independent as possible of atmospheric models.
Methods. We used the visible spectrograph VEGA at the CHARA interferometric array to complete the sample of Ap stars currently observable with this technique. We estimated the angular diameter and radius of six new targets. We estimated their bolometric flux based solely on observational spectroscopic and photometric data to derive nearly model-independent luminosities and effective temperatures.
Results. We extend to 14 the number of Ap stars for which interferometric angular diameters have been measured. The fundamental parameters we derived for the complete Ap sample are compared with those obtained through a self-consistent spectroscopic analysis. Based on a model fitting approach of high-resolution spectra and spectro-photometric observations over a wide wavelength range, this method takes into account the anomalous chemical composition of the atmospheres and the inhomogeneous vertical distribution for different chemical elements. Regarding both the radii and the effective temperatures, the derived values from our interferometric observations and from self-consistent modelling are consistent within better than 2σ for nine targets out of ten. We thus benchmark nine Ap stars for effective temperatures ranging from 7200 and 9100 K, and luminosities ranging between 7 L and 86 L.

Conclusions. These results will be key for the future derivation of accurate radii and other fundamental parameters of fainter peculiar stars for which both the sensitivity and the angular resolution of the current interferometers are not sufficient. Within the context of the observations of Ap stars with the Transiting Exoplanet Survey Satellite (TESS), these interferometric measurements are crucial for testing the mechanism of pulsation excitation at work in these peculiar stars. In particular, our interferometric measurements provide accurate locations in the Hertzsprung-Russell diagram for hot Ap stars among which pulsations may be searched for with TESS, putting to test the blue edge of the theoretical instability strip. These accurate locations could be used to derive masses and ages of these stars through a specific grid of models, and to test correlations between the properties of these peculiar stars and their evolutionary state.

Keywords
methods: observational; techniques: high angular resolution; techniques: interferometric; stars: fundamental parameters

Notes
- CHARA/VEGA observations
- a Corrigendum to this article has ben published, see
https://doi.org/10.1051/0004-6361/202038753e

Astronomy & Astrophysics
Volume 642, Article Number A101, Number of pages 13
2020 October

>> ADS>> DOI

Faculdade de Ciências da Universidade de Lisboa Universidade do Porto Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia