C. Inserra, R. C. Nichol, D. Scovacricchi, J. Amiaux, M. Brescia, C. Burigana, E. Cappellaro, C. S. Carvalho, S. Cavuoti, V. Conforti, J.-C. Cuillandre, A. C. da Silva, A. de Rosa, M. Della Valle, J. Dinis, E. Franceschi, I. M. Hook, P. Hudelot, K. Jahnke, T. D. Kitching, H. Kurki-Suonio, I. Lloro, G. Longo, E. Maiorano, M. Maris, J. D. Rhodes, R. Scaramella, S. J. Smartt, M. Sullivan, C. Tao, R. Toledo-Moreo, I. Tereno, M. Trifoglio, L. Valenziano
Abstract
Context. In the last decade, astronomers have found a new type of supernova called superluminous supernovae (SLSNe) due to their high peak luminosity and long light-curves. These hydrogen-free explosions (SLSNe-I) can be seen to z~4 and therefore, offer the possibility of probing the distant Universe.
Aims. We aim to investigate the possibility of detecting SLSNe-I using ESA's Euclid satellite, scheduled for launch in 2020. In particular, we study the Euclid Deep Survey (EDS) which will provide a unique combination of area, depth and cadence over the mission.
Methods. We estimated the redshift distribution of Euclid SLSNe-I using the latest information on their rates and spectral energy distribution, as well as known Euclid instrument and survey parameters, including the cadence and depth of the EDS. To estimate the uncertainties, we calculated their distribution with two different set-ups, namely optimistic and pessimistic, adopting different star formation densities and rates. We also applied a standardization method to the peak magnitudes to create a simulated Hubble diagram to explore possible cosmological constraints.
Results. We show that Euclid should detect approximately 140 high-quality SLSNe-I to z~3.5 over the first five years of the mission (with an additional 70 if we lower our photometric classification criteria). This sample could revolutionize the study of SLSNe-I at z > 1 and open up their use as probes of star-formation rates, galaxy populations, the interstellar and intergalactic medium. In addition, a sample of such SLSNe-I could improve constraints on a time-dependent dark energy equation-of-state, namely w(a), when combined with local SLSNe-I and the expected SN Ia sample from the Dark Energy Survey.
Conclusions. We show that Euclid will observe hundreds of SLSNe-I for free. These luminous transients will be in the Euclid data-stream and we should prepare now to identify them as they offer a new probe of the high-redshift Universe for both astrophysics and cosmology.
Keywords
surveys; supernovae: general; cosmology: observations
Astronomy & Astrophysics
Volume 609, Article Number A83, Number of pages 12
2018 January