K. Perraut, I. M. Brandão, M. S. Cunha, D. Shulyak, D. Mourard, N. Nardetto, T. A. ten Brummelaar
Abstract
Context. There is still a debate about the nature of the mechanism that causes the pulsation excitation of the rapidly oscillating Ap stars that oscillate above the highest theoretically acoustic frequency. HD 24712 is a good test case for such a study because it is bright, its parallax accurately determined, and its frequency spectrum is well known.
Aims: Visible long-baseline interferometry is a unique technique for measuring accurate angular diameters of targets as small as the brightest roAp stars, and thus estimating accurate radii by a method as independent as possible of atmosphere models.
Methods: We used the visible spectrograph VEGA at the CHARA long-baseline optical array to observe HD 24712, and we derived its limb-darkened diameter. We also estimated its bolometric flux from spectroscopic data in the literature and determined its radius, luminosity, and effective temperature.
Results: We determined a limb-darkened angular diameter of 0.335 ± 0.009 mas for HD 24712 and derived a radius of R = 1.772 ± 0.057 R☉, a luminosity of L = 7.2 ± 1.8 L☉, and an effective temperature of Teff = 7235 ± 280 K, which is in very close agreement with the values provided by the self-consistent stratified model developed for this star. We used these fundamental parameters to set HD 24712 in the Hertzsprung-Russell diagram. Its position is marginally consistent with the region where high radial order modes are predicted to be excited by the κ-mechanism.
Conclusions: We conclude that oscillations in this star are most likely not driven by the κ-mechanism.Based on observations made with the VEGA/CHARA spectro-interferometer.
Keywords
stars: fundamental parameters, stars: individual: HD 24712, techniques: high angular resolution, techniques: interferometric
Astronomy & Astrophysics
Volume 590, Article Number A117, Number of pages 6
2016 June