PhD Student
Lastest publications at IA (or with IA Researchers) Euclid Collaboration, L. Bisigello, M. Massimo, C. Tortora, S. Fotopoulou, V. Allevato, M. Bolzonella, C. Gruppioni, L. Pozzetti, G. Rodighiero et al. (including: P. A. C. Cunha, A. Humphrey, A. C. da Silva, J. Dinis, I. Tereno, C. S. Carvalho), 2024,
Euclid preparation. XLIX. Selecting active galactic nuclei using observed colours,
Astronomy & Astrophysics, 691, 24
>> Abstract Euclid Collaboration, A. Enia, M. Bolzonella, L. Pozzetti, A. Humphrey, P. A. C. Cunha, W. G. Hartley, F. Dubath, S. Paltani, X. Lopez Lopez et al. (including: J. Brinchmann, A. C. da Silva, J. Dinis, I. Tereno, C. S. Carvalho, C. J. A. P. Martins), 2024,
Euclid preparation. LI. Forecasting the recovery of galaxy physical properties and their relations with template-fitting and machine-learning methods,
Astronomy & Astrophysics, 691, 26
>> AbstractP. A. C. Cunha, A. Humphrey, J. Brinchmann, S. G. Morais, R. Carvajal, J. M. Gomes, I. Matute, A. Paulino-Afonso, 2024,
Identifying type II quasars at intermediate redshift with few-shot learning photometric classification,
Astronomy & Astrophysics, 687, 20
>> AbstractR. Carvajal, I. Matute, J. Afonso, R. P. Norris, K. J. Luken, P. Sánchez-Sáez, P. A. C. Cunha, A. Humphrey, H. Messias, S. Amarantidis et al. (including: H. Miranda, A. Paulino-Afonso, C. Pappalardo), 2023,
Selection of powerful radio galaxies with machine learning,
Astronomy & Astrophysics, 679, 24
>> AbstractA. Humphrey, P. A. C. Cunha, A. Paulino-Afonso, S. Amarantidis, R. Carvajal, J. M. Gomes, I. Matute, P. Papaderos, 2023,
Improving machine learning-derived photometric redshifts and physical property estimates using unlabelled observations,
Monthly Notices of the Royal Astronomical Society, 520, 305 - 313
>> AbstractEuclid Collaboration, A. Humphrey, L. Bisigello, P. A. C. Cunha, M. Bolzonella, S. Fotopoulou, K. Caputi, C. Tortora, G. Zamorani, P. Papaderos et al. (including: J. Brinchmann, A. C. da Silva, I. Tereno, C. S. Carvalho), 2023,
Euclid preparation. XXII. Selection of quiescent galaxies from mock photometry using machine learning,
Astronomy & Astrophysics, 671, 36
>> Abstract