RESEARCH
<< back
Venus upper atmosphere revealed by a GCM: Temperature, CO, O2 and O distribution in the puzzling transition region

G. Gilli, T. Navarro, S. Lebonnois, D. Quirino, V. Silva, F. Lefèvre

Abstract
Venus Global Climate Models (VGCM) are powerful tools to investigate the amount of data recently acquired by Venus Express (VEx) and Akatsuki missions, as well as from ground-based telescopes. Our understanding of the Venusian climate has increased with recent progresses with these models. VEx observations revealed a more variable atmosphere than expected, in particular in the "transition" region (~70-120 km) between the retrograde superrotating zonal flow (RSZ) and the day-to-night circulation. This region exhibits latitude and day-to-day variations of temperature up to 80 K above 100-km at the terminator, and apparent zonal wind velocities measured around 96-km on the Venus nighttime highly changing in space and time. Those variations are not fully explained by current 3D models and specific processes (e.g. gravity wave (GW) propagation, thermal tides, large scale planetary waves) responsible for driving them are still under investigation. The role of convectively generated GW and their impact on zonal wind and temperature in the region of aerobraking can be explored with an update version of the Institut Pierre-Simon Laplace (IPSL) VGCM, thanks to the inclusion of a stochastic non-orographic GW parameterization based on the Earth GCM. A vertical coupling between the cloud level and the thermosphere generated by GW, modulated and periodically filtered by the oscillation of the background zonal wind associated with the Kelvin wave was recently suggested in Nara et al.2020. This mechanism can partially explain the observed variation of oxygen UV airglow in the dayside (Navarro et al.in preparation).

14th Europlanet Science Congress 2020

EPSC 2020
Volume 14, Number EPCS
2020 September

>> ADS

Faculdade de Ciências da Universidade de Lisboa Universidade do Porto Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia